虫儿飞信息加工坊

专业发展 网站建设 感悟心情 优惠购 音乐欣赏



当前位置:网站首页>> 专业发展 >> 数学大家
中外著名数学家资料集

文章作者:佚名 责任编辑:admin 发布时间:2011/8/9 21:01:41


1.20世纪数学的指路人——希尔伯特
 
  1900年8月8日,在巴黎第二届国际数学家大会上,德国的希尔伯特(1862—1943)提出新世纪数学家应当努力解决的23个问题。从那以后,全世界几乎所有的数学家,都被他吸引。这23个问题成为本世纪数学学科发展的缩影。这些问题的研究有力地推动了20世纪数学的发展。
  希尔伯特的工作涉及许多数学基本问题。19世纪中叶以后,与通常的欧几里德几何不同的非欧几何出现后,暴露了几千年来被认为非常严密的欧几里德几何的缺陷,需要改进。希尔伯特的巨著《几何学基础》,提出了一个更为严谨完整的几何公理系统,并引起了20世纪初为建立各个数学分支牢固基础而努力的“公理化运动”。
  他在1900年提出的23个数学问题,被认为是本世纪数学的制高点,在世界上产生了深远的影响。著名的哥德巴赫猜想也是问题之一,以陈景润为代表的中国数学家获得了重大突破,但还没有彻底解决。希尔伯特领导的数学学派是上世纪末本世纪初数学界的一面旗帜,希尔伯特被称为“无冕的数学之王”。
  希尔伯特生于普鲁士,从小对数学得心应手。他的一位亲戚回忆说,小希尔伯特“作文”要靠妈妈帮助,但是却能给老师讲解数学难题。希尔伯特18岁进大学,23岁获博士学位。
  希尔伯特不仅是位杰出的学者,而且是为思想自由、政治民主而斗争的战士,1943年2月14日与世长辞。后人在他的墓碑上镌刻着他的格言:“我们必须知道,我们必将知道。”
[NextPage]
2.阿尔•花拉子米——中世纪阿拉伯数学家
 
阿尔•花拉子米(Al Khowarizmi,约780~850),出生于波斯北部城市花拉子模,据说他曾到过阿富汗、印度,后长期定居巴格达,在阿拔斯王朝哈里发马蒙的朝廷中任职,主持卡巴格达“智慧宫”的工作,负责收集、整理、翻译大量散失的古希腊和东方的科学技术及数学著作。他对天文历法、地理地图等方面均有所贡献。其著作通过后来的拉丁文译本,对欧洲近代科学的诞生产生过积极影响。著作原稿现存英国剑桥大学图书馆,直至1857年还刊行过。
阿尔•花拉子米有两部数学著作传世。一部只有拉丁文译本,书名为《花拉子米算术》。书中介绍印度的十进位值制记数法和以此为基础的算术知识。现代数学中“算法”(algorithm)一词即来源于这部著作,也就是花拉子米的人名。另一部著作名为们尔热巴拉和阿尔穆卡巴拉》意为还原与对消,暗示方程的两端的移项和合并同类项。此书分三部分,第一部分是关于一次、二次方程的解法,其中首次给出二次方程的一般解法,并给出相应的几何证明,以保证解法的正确性。这一部分在12世纪被单独译成拉丁文,且有两个不同的译本,在欧洲一直流行到16世纪。此书的书名后来也衍变成algebra,译成中文为“代数”。书的另外两部分分别为实用测量术和遗产计算问题。有人因为此书第一部分的重要性,加把阿尔•花拉子米誉为代数学的鼻祖。

[NextPage]
3.第一个算出地球周长的人——埃拉托色尼
(约公元前275—前194)
 
2000多年前,有人用简单的测量工具计算出地球的周长。这个人就是古希腊的埃拉托色尼。
  埃拉托色尼博学多才,他不仅通晓天文,而且熟知地理;又是诗人、历史学家、语言学家、哲学家,曾担任过亚历山大博物馆的馆长。
  细心的埃拉托色尼发现:离亚历山大城约800公里的塞恩城(今埃及阿斯旺附近),夏日正午的阳光可以一直照到井底,因而这时候所有地面上的直立物都应该没有影子。但是,亚历山大城地面上的直立物却有一段很短的影子。他认为:直立物的影子是由亚历山大城的阳光与直立物形成的夹角所造成。从地球是圆球和阳光直线传播这两个前提出发,从假想的地心向塞恩城和亚历山大城引两条直线,其中的夹角应等于亚历山大城的阳光与直立物形成的夹角。按照相似三角形的比例关系,已知两地之间的距离,便能测出地球的圆周长。埃拉托色尼测出夹角约为7度,是地球圆周角(360度)的五十分之一,由此推算地球的周长大约为4万公里,这与实际地球周长(40076公里)相差无几。他还算出太阳与地球间距离为1.47亿公里,和实际距离1.49亿公里也惊人地相近。这充分反映了埃拉托色尼的学说和智慧。
埃拉托色尼是首先使用“地理学”名称的人,从此代替传统的“地方志”,写成了三卷
专著。书中描述了地球的形状、大小和海陆分布。埃拉托色尼还用经纬网绘制地图,最早把物理学的原理与数学方法相结合,创立了数理地理学。
[NextPage]
4.工作到最后一天的华罗庚(1910—1985)
 
  1985年6月12日,在东京一个国际学术会议上,75岁的华罗庚教授用流利的英语,作了十分精彩的报告。当他讲完最后一句话,人们还在热烈鼓掌时,他的身子歪倒了。
  华罗庚出生于江苏省金坛县一个小商人家庭,从小喜欢数学,而且非常聪明。一天老师出了一道数学题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”“23!”老师的话音刚落,华罗庚的答案就脱口而出,老师连连点头称赞他的运算能力。可惜因为家庭经济困难,他不得不退学去当店员,一边工作,一边自学。18岁时,他又染上伤寒病,与死神搏斗半年,虽然活了下来,但却留下终身残疾——右腿瘸了。
  1930年,19岁的华罗庚写了一篇《苏家驹之代数的五次方程不成立的理由》,发表在上海《科学》杂志上。清华大学数学系主任熊庆来从文章中看到了作者的数学才华,便问周围的人,“他是哪国留学的?在哪个大学任教?”当他知道华罗庚原来是一个19岁的小店员时,很受感动,主动把华罗庚请到清华大学。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了著名的华氏定理。
  抗日战争时期,华罗庚白天在西南联大任教,晚上在昏暗的油灯下研究。在这样艰苦的环境中,华罗庚写出了20多篇论文和厚厚的一本书《堆垒素数论》。他特别注意理论联系实际,1958年以后,他走遍了20多个省市自治区,动员群众把优选法用于农业生产。记者在一次采访时问他:“你最大的愿望是什么?”他不加思索地回答:“工作到最后一天。”他的确为科学辛劳工作到最后一天,实现了自己的诺言。
 
[NextPage]
5.轰动日本列岛的中国数学家——陈建功
 
中国著名数学家陈建功(1893—1971),1929年获得日本理学博士学位时,他的指导老师藤原教授在庆祝会上说:“我一生以教书为业,没有多少成就。不过,我有一个中国学生,名叫陈建功,这是我一生的最大光荣。”
  陈建功生于浙江绍兴,从小好学,一向是文理兼优的好学生,数学尤其突出。1913年到1929年,陈建功三次东渡日本求学,1929年获得日本理学博士学位,成为20世纪初留日学生中第一个获得理学博士学位的中国人,也是在日本获得这一荣誉的第一个外国科学家。这件事轰动了日本列岛。当时,他的导师藤原教授苦于自己专业领域内缺少日文著作,只能用英文上课,便委托陈建功用日文写了一部《三角函数论》,既反映国际最新成果,也包括了陈建功自己的研究心得。他在写书时首创的许多日文名词,至今还在使用。
  回国后,陈建功被聘为浙江大学数学教授与著名数学家苏步青一起,从1931年开始举办数学讨论班,对青年教师和高年级大学生进行严格训练,培养他们的独立工作和科学研究能力,逐渐形成了国内外著名的陈苏学派。这个学派代表了中国函数论和微分几何研究的最高水平。

[NextPage]
6.获沃尔夫奖唯一华人数学家——陈省身
(1911~2004)
  在数学领域,沃尔夫奖与菲尔兹奖是公认的能与诺贝尔奖相媲美的数学大奖。菲尔兹奖主要奖励在现代数学中做出突出贡献的年轻数学家,而沃尔夫奖主要奖励在数学上做出开创性工作、具有世界声誉的数学家。到1990年为止,世界上仅有24位数学家获得过沃尔夫奖,而陈省身教授就是其中之一。他由于在整体微分几何上的杰出工作获得1984年度沃尔夫奖,成为唯一获此殊荣的华人数学家。
  陈省身教授是浙江嘉兴人,现定居美国。他15岁就考入了天津南开大学,后进 入清华大学研究生院,1934年完成学业并赴德国留学,仅用了1年零3个月便获得了汉堡大学博士学位。之后又赴法国师从微分几何学泰斗嘉当,由此开始了他在整体微分几何领域的开创性工作。
  除了在数学上做出巨大成就,陈省身教授还培养了一大批世界级的科学家,其中包括诺贝尔物理学奖获得者杨振宁,菲尔兹奖获得者丘成桐,中国国家自然科学奖一等奖获得者吴文俊等。
  近年来,陈省身教授积极致力于中国数学研究的开展,多次回国讲学,举办讨论班,指导各种学术活动,并于1985年创办南开大学数学研究所,亲自担任所长。展望21世纪,陈省身教授预言中国将成为世界数学大国。
[NextPage]
7.几何之父——欧几里德
 
我们现在学习的几何学,是由古希腊数学家欧几里德(公无前330—前275)创立的。他在公元前300年编写的《几何原本》,2000多年来都被看作学习几何的标准课本,所以称欧几里德为几何之父。
  欧几里德生于雅典,接受了希腊古典数学及各种科学文化,30岁就成了有名的学者。应当时埃及国王的邀请,他客居亚历山大城,一边教学,一边从事研究。
  古希腊的数学研究有着十分悠久的历史,曾经出过一些几何学著作,但都是讨论某一方面的问题,内容不够系统。欧几里德汇集了前人的成果,采用前所未有的独特编写方式,先提出定义、公理、公设,然后由简到繁地证明了一系列定理,讨论了平面图形和立体图形,还讨论了整数、分数、比例等等,终于完成了《几何原本》这部巨著。
  《原本》问世后,它的手抄本流传了1800多年。1482年印刷发行以后,重版了大约一千版次,还被译为世界各主要语种。13世纪时曾传入中国,不久就失传了,1607年重新翻译了前六卷,1857年又翻译了后九卷。
  欧几里德善于用简单的方法解决复杂的问题。他在人的身影与高正好相等的时刻,测量了金字塔影的长度,解决了当时无人能解的金字塔高度的大难题。他说:“此时塔影的长度就是金字塔的高度。”
  欧几里德是位温良敦厚的教育家。欧几里得也是一位治学严谨的学者,他反对在做学问时投机取巧和追求名利,反对投机取巧、急功近利的作风。尽管欧几里德简化了他的几何学,国王(托勒密王)还是不理解,希望找一条学习几何的捷径。欧几里德说:“在几何学里,大家只能走一条路,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。一次,他的一个学生问他,学会几何学有什么好处?他幽默地对仆人说:“给他三个钱币,因为他想从学习中获取实利。”
 欧氏还有《已知数》《图形的分割》等著作。

[NextPage]
8.杰出的女数学家米•诺特
 
“据现代权威数学家们判断,诺特女士是自从妇女开始受到高等教育以来最重要的、富于创造性的数学天才。在最有天赋的数学家们为之忙碌了多少世纪的代数领域里.她发现了一套方法,当前一代年轻数学家的成长已证明了它的巨大意义,依据这套方法,纯粹数学成了一首逻辑概念的诗篇。”这是1935年4月26日著名科学家爱因斯坦在追悼诺特的大会上讲的一段话。诺特(EmmyNoether,1882-1935),1882年3月23日生于德国大学城——爱尔兰根的一个犹太人家庭,父亲马克思•诺特(Max Noether,1844-1921)是一位颇有名气的数学家,他从1875年起到1921年逝世前,一直在爱尔兰根大学当教授。弟弟弗黎获•诺特(Fritz Noether,1884~?)也是一位数学家,先在德国布雷斯劳工学院当教授,1935年受纳粹迫害逃往苏联,在西伯利亚托姆斯克数学力学研究所当教授,没多久被关进监狱,从此杳无音信。
诺特12岁时在爱尔兰根市高级女子学校读中学,她对那些专门为女孩子开设的宗教、钢琴、舞蹈等课程毫无兴趣,只对语言学习还感兴趣。中学毕业后,1900年4月她顺利地通过了法语和英语教师资格考试,原本准备去当教师,同年秋天她改变了主意,她决意要到父亲任教的爱尔兰根大学去学数学。但是,当时德国不准女子在大学注册,只能当旁听生,并缴纳听课费,在极其罕见的情况下,才可能征得主讲教授的同意,参加考试而取得文凭。诺特总算幸运地于l903年7月通过了考试。当年冬天,她来到哥廷根大学,直接听到希尔伯特、克莱因、闵科夫斯基等著名数学家讲课,受到极大的鼓舞。1904年德国大学改制,允许女生注册,当年10月她便正式回到爱尔兰根注册学习,到1907年底,她通过了博士考试,其博士论文题目是“三元双二次型的不变量完全系”,导师是戈丹(Paul Albert Gordan,1837~1912)。
戈丹是诺特父亲的同事、至友,对诺特早年生活影响很大,诺特的这篇博士论文完全承袭了戈丹的工作特色,充满了戈丹式的公式,通篇都是符号演算。后来,尽管诺特离开了戈丹的研究方向,但她对导师一直怀着深深的敬意,在她的书房里一直挂着戈丹的画像。1912年戈丹去世了,接替他的先是施密特,后是费歇尔。在费歇尔指导下,诺特逐步实现了从戈丹的形式观念到希尔伯特研究方式的转变,从这种意义上讲,费歇尔对诺特的学术发展的影响,可能比戈丹更深入。
1915年,哥廷根大学的克莱因、希尔伯特邀请诺特去哥廷根。他们当时热衷于相对论研究,而诺特在不变式理论方面的实力对他们的研究会有帮助。1916年,诺特离开爱尔兰根,定居哥廷根。希尔伯特很想帮她在哥廷根大学取得授课资格,但是当时哥廷根大学哲学系中的语言学教授、历史学教授却极力反对,其理由就因诺特是女人。希尔伯特在校务会议上不无气愤地说:“先生们,我不明白为什么候选人的性别是阻碍她取得讲师资格的理由,我们这里毕竟是大学而不是浴池。”也许正因为这般话,更激怒了他的对手们,诺特仍然没有获准通过。然而,她还是在哥廷根的讲台上向学生讲了课,不过是在希尔伯特的名义之下。第一次世界大战结束后,德意志共和国成立了,情况才发生变化。1919年诺特才当上了讲师,1922年至1933年,她取得“编外副教授”职位,这是没工资的头衔,只因她担当了代数课的讲授,才从学生所缴学费中支付给她一小笔薪金。在这种艰难的情况下,诺特在希尔伯特、克莱因的相对论研究的思想影响下,于1918年发表了两篇重要论文,一篇是把黎曼几何和广义相对论中常用的微分不变式问题化为代数不变式问题,一篇是把物理学中守恒律同不变性联系起来,被称为“诺特定理”。
1920年以后,诺特开始走上自己独立创建“抽象代数学”的道路。她从不同领域的相似现象出发,把不同的对象加以抽象化、公理化,然后用统一的方法加以处理,得出一般性的理论,用她的这种理论又能处理各个不同领域的特殊性的问题。诺特的这套理论也就是现代数学中的“环”和“理想”的系统理论,完成于1926年。一般认为抽象代数形式的时间就是1926年,从此代数学研究对象从研究代数方程根的计算与分布,进入到研究数字、文字和更一般元素的代数运算规律和各种代数结构,完成了古典代数到抽象代数的本质的转变。诺特当之无愧地被人们誉为抽象代数的奠基人之一。。
诺特的学术论文只有40多篇,她对抽象代数学发展所产生的巨大影响,并不完全出自她的论文,更重要的还是出自她与同事、学生的接触、交往、合作与讲课。她的讲课技巧并不高明,既匆忙又不连贯。但是,她常详细叙述自己尚末最终定型的新想法,其中充满了深刻的哲理,也充满了不同凡响的创造激情。她很喜爱自己的学生,在她身边形成了一个熙熙攘攘的“家庭”,这些学生被称为“诺特的孩子们”。其中有十几位学生后来成为著名数学家。
1928年在意大利波隆那举行的国际数学家大会上,诺特应邀作了一个3O分钟的分组报告。1932年在苏黎世举行的国际数学家大会上,诺特作了一小时的全会报告。她的报告得到许多数学家的赞扬,赢得了极高的国际声誉。一些年迈的数学家亲眼得见他们用旧式计算方法不能解决的问题,被诺特用抽象代数方法漂亮而简捷地解决了,不得不心悦诚服。同年,由于她在代数学方面的卓越成就,诺特和阿廷共同获得了“阿克曼•特布纳奖”。
可是,苏黎世大会之后仅几个星期厄运降临了。1933年1月,希特勒上台后疯狂地迫害犹太人,当年4月26日,地方报纸刊登了一项通告,哥廷根大学6位犹太人教授被勒令离开大学,其中之一就是诺特。霎时间,诺特在哥廷根大学的报酬极低的职务被剥夺了,她几乎走投无路了。起初,她曾想去前苏联。因为在1928年至1929年的冬天,她访问过莫斯科大学,在那里讲授抽象代数,并指导一个代数几何讨论班,对前苏联数学和数学家都产生了良好的影响,与前苏联著名数学家亚历山得罗夫等也给下了友谊。亚历山得罗夫当即表示欢迎诺特来莫斯科大学任教,由于种种原因,未能成功。后来,经著名数学家韦尔介绍和帮助,1933年9月,诺特才得以移居美国,在美国布林马尔女子学院任教,并在普林斯顿高等研究院兼职。
在美国期间,诺特每周去普林斯顿讲课,当时听她讲课的奎因教授回忆说,诺特身材不高,体态略胖,肤色黝黑,剪得短短的黑发还夹着几缕灰丝。她戴着一副厚厚的近视眼镜,用不甚连贯的英语讲课。她喜欢散步,常与学生外出远足,途中往往全神贯注地谈论数学,不顾来往的行人与车辆,以致学生们不得不保护她的安全。在诺特一生中,或许从来没有像在布林马尔学院和普林斯顿高等研究院,受到如此尊敬、同情和友情。但是,她依然怀念着祖国,怀念着哥廷根。1934年夏天,她曾回到哥廷根,看到哈塞仍然努力重建哥廷根光荣而悠久的数学传统,感到由衷的欣慰。
1935年春,当诺特返回美国后,经医生检查发现,她已被癌症缠身,肿瘤急剧地损伤着她的身体,只有手术才可能挽救她的生命。手术后病情一度好转,大家都期待她康复。不料得了手术并发症。4月14日这位终生未婚,把全部精力献给了她所热爱的数学事业的伟大女数学家,辞然与世长辞,终年53岁。
4月26日布林马尔学院为诺特举行了追悼会,爱因斯坦为她写了讣文,韦尔为她写了长篇悼词,深情地缅怀她的生活、工作和人格:
她曾经是充满生命活力的典范,以她那刚毅的心情和生活的勇气,坚定地屹立在我们这个星球上,所以大家对此毫无思想准备。她正处于她的数学创造能力的顶峰。她那深远的想像力,同她那长期经验积累起来的技能,已经达到完美的平衡。她热烈地开始了新问题的研究。而这一切现在突然宣告结束,她的工作猝然中断。
坠落到了黑暗的坟墓,
美丽的、仁慈的、善良的,
他们都轻轻地去了;
聪颖的、机智的、勇敢的,
他们都平静地去了;
我知道,但我决不认可,
而且我也不会顺从。
我们对她的科学工作与她的人格的记忆决不会很快消逝。她是一位伟大的数学家,而且我坚信,也是历史曾经产生过的最伟大的女性之一。

[NextPage]
9.解析几何的创始人——笛卡尔
(René Descartes, 1596~1650)
 
  法国数学家、物理学家、哲学家笛卡尔(1596—1650),生前因怀疑教会信条受到迫害,长年在国外避难。他的著作生前或被禁止出版或被烧毁,他死后多年还被列入“禁书目录”。但在今天,法国首都巴黎安葬民族先贤的圣日耳曼圣心堂中,庄重的大理石墓碑上镌刻着“笛卡尔,欧洲文艺复兴以来,第一个为人类争取并保证理性权利的人”。
  笛卡尔的著作,无论是数学、自然科学,还是哲学,都开创了这些学科的崭新时代。《几何学》是他公开发表的唯一数学著作,虽则只有117页,但它标志着代数与几何的第一次完美结合,使形形色色的代数方程表现为不同的几何图形,许多相当难解的几何题转化为代数题后能轻而易举地找到答案. 他的主要著作都是在荷兰完成的,其中1637年出版的《方
法论》一书成为哲学经典。这本书中的3个著名附录《几何》《折光》和《气象》更奠定了笛卡儿在数学、物理和天文学中的地位。在《几何》中,笛卡儿分析了几何学与代数学的优缺点,指出:希腊人的几何过于抽象,而且过多的依赖于图形,总是要寻求一些奇妙的想法。代数却完全受法则和公式的控制,以致于阻碍了自由的思想和创造。他同时看到了几何的直观与推理的优势和代数机械化运算的力量。于是笛卡儿着手解决这个问题,并由此创立了解析几何。所以说笛卡尔是解析几何的创始人。
  笛卡尔一生作出了多方面的贡献,他在1634年写的《宇宙学》,包含当时被教会视为“异端”的观点:他提出地球自转和宇宙无限;他提的漩涡说是当时最权威的太阳起源理论;他还提出了光的本性是粒子流的假说,并认为在广袤无垠的太空中存在着极其精细的以太。直到二三百年以后,笛卡尔的这些观点仍具有很高的研究价值。
  笛卡尔出生于法国拉哈的律师家庭,他一出世母亲就病故了,依靠保姆照料长大。笛卡尔在当时欧洲最著名的拉夫雷士学校读书,他虽身体孱弱,但尊敬师长,勤奋刻苦。笛卡尔生活在资产阶级与封建领主、科学与神学进行激烈斗争的时代。从读书始便对僵化的说教有强烈的怀疑批判精神,坚定不移地寻找真理。笛卡尔在获得法学博士学位后,为了“读世界这本大书”,曾到荷兰服役,一边到各地旅行,一边和朋友讨论数学和科学问题。他探求正确的思想方法,创立为实践服务的哲学,“才能成为自然的主人”。退伍以后,主要居住在荷兰,也曾回到法国,从事学术研究。1649年应邀去瑞典担任女王的教师,最后因肺炎病逝在异国。
 
[NextPage]
10.科学巨人牛顿
 
伊撒克•牛顿(Isaac Newton,1642~1727)于1642年12月25日出生在英国林肯郡沃尔斯索普村。他是个早产儿,出生时十分脆弱和瘦小。在他出生之后的最初几个月里,医生不得不在他的脖子上装了一个支架来保护他,没有人期望他能活下来。后来,牛顿时常拿自己开玩笑,说他妈妈曾告诉他:他出生时是如此弱小,以至于可以把他放进一个一夸脱(约1.14升)的大杯子里。
牛顿的父亲是一个农民,在他出生前几个月就去世了。当他还不到两岁的时候,他母亲改嫁给了当地的一位牧师,小牛顿只好寄宿在他年迈的外婆家中。牛顿小时候性格孤僻腼腆,对功课也不感兴趣,学习很吃力。12岁时,他由农村小学转到格朗达姆镇学校,在班上被同学瞧不起,而且常常受欺负。有一次,班上的一个大个子又欺负他,牛顿终于忍无可忍,奋起反抗,竟然把对方打败了。从此他发奋读书,成绩逐渐上升到全班第一。14岁那年,他继父病故,他母亲就把他接回家并想把他培养成一个农民。但事实表明牛顿并不适合做这方面的事情。他宁愿读书,做一些木制模型,他曾经自己做过一个以老鼠为动力的磨面粉的磨和一个用水推动的木钟,就是不愿意干农活。幸运的是,他母亲最终放弃了这种尝试并让他回到中学去学习。
1661年6月,18岁的牛顿考进了剑桥大学的三一学院。在最初的一段时间里,他的成绩并不突出。但在导师巴罗的影响下,他的学业开始突飞猛进。巴罗这位优秀的数学家、古典学者、天文学家和光学研究领域里的权威,是第一个发现牛顿天才的人。1664年,牛顿获得学士学位,1665年毕业于剑桥大学,并留校作研究工作。在此期间,牛顿开始把注意力放在数学上。他先读了欧几里得的《几何原本》,在他看来那太容易了;然后他又读笛卡儿的《几何学》,这对他来说又有些困难。他还读了奥特雷德的《入门》,开普勒和韦达的著作,还有沃利斯的《无穷的算术》。他从读数学到研究数学,四岁时就发现了二项式定理的推广形式,并且创造了流数术,即我们现在所说的求导数方法。1666年6月由于凶猛的鼠疫横行,剑桥大学被迫停课。牛顿回到了伍尔斯托普家乡,住了将近两年。其间,他研究数学和物理问题,并且将万有引力理论的基本原理系统化。1666年,他做了第一个光学实验,用三棱镜分析目光,发现白光是由不同颜色的光构成的,从而奠定了光谱分析学的基础。
1667年,牛顿回到剑桥,有两年的功夫主要从事光学研究。1669年,巴罗把自己卢卡斯讲座的席位让给了牛顿,于是牛顿开始了他长达18年的大学教授生涯。他的第一个讲演是关于光学理论的,后来他把它作为一篇论文在英国皇家学会会刊上发表,并引起了相当大的反响。他在光学中得到的一些结论引起了一些科学家的猛烈攻击。他看到这些争论非常无聊,就发誓再也不发表任何关于科学的东西了。也许就是因为这个原因,从而引发了他与莱布尼茨在微积分发现的优先权上的争论。这场争论导致英国数学家追认牛顿为他们的导师,并割断了他们与欧洲大陆的联系。从而使英国的数学进展推迟了一百年。
牛顿的《流数术》写于1671年。在这部影响深远的著作中,牛顿阐述了他的微积分的一些基本概念,还有对代数方程或超越方程都适用的实根近似值求法。这种方法后来被称为牛顿法。
1672年,由于他设计、制造了反射望远镜,而被选为皇家学会会员。他把关于光的粒子学说的论著寄给了皇家学会,他的声誉以及对理论的巧妙处理,使该理论得到了普遍采用。
牛顿从1673年到1683年在大学的讲演主要是关于代数和方程论的。其演讲内容都包括在1707年发表的《通用算术》一书中。其中,有许多方程论的成果,如:实多项式的虚根必成对出现;求多项式根的上界的规则等等。
1679年,牛顿把对地球半径的一次新的测量与对月球运动的研究联系起来,并以此来证实他的万有引力定律。他还假定太阳和行星为重质点,证明了他的万有引力定律与开普勒的行星运动定律的一致性。但有5年之久,他没有把这个重要的发现告诉任何人。后来,哈雷看到了牛顿的原稿,认识到它的重要性。于是在他的鼓励下,牛顿从1685年至1687年,完成了巨著《自然科学的数学原理》第1、2、3册,由哈雷出资发表。这部著作的诞生立刻对整个欧洲产生了巨大影响。
这本书中,第一次有了地球和天体主要运动现象的完整的力学体系和完整的数学公式。事实证明,这是科学史上最有影响、荣誉最高的著作。有意思的是,这些定理也许是用流数术发现的,但却都是借助古典希腊几何熟练地证明的。在相对论出现之前,整个物理学和天文学都是以牛顿在这部著作中作出的一个特别适合的坐标系的假定为基础的。书中还有许多涉及高次平面曲线的成果和一些引人入胜的几何定理的证明。
1689年,牛顿成为剑桥大学选出的国会议员。1692年,他得了奇怪的病,持续了大约两年,致使他有些精神失常。1696年,牛顿被任命为造币局总监。1699年,他被法国巴黎科学院选为外籍院土,同时被提升为造币厂厂长。1703年,被选为皇家学会主席并连任20年,直至他逝世。1705年,他被封为爵士。晚年,他主要从事化学、炼丹和神学。虽然他在数学上创造性的工作实质上已经停止了,但他还没有失去这方面的非凡能力,仍能熟练地解决提供给他的数学竞赛题,而这些题目是远远超过了其他数学家的能力的。在他晚年的生活中,与莱布尼茨那场不幸的争论,使他很不愉快。1727年,他在一场拖了很久的痛苦的病中死去,终年85岁。他被安葬在威斯敏斯特教堂。
纵览牛顿的一生,他不愧为最伟大的数学家和物理学家。他对物理问题的洞察力以及运用数学方法处理物理问题的能力,都是空前卓越的。莱布尼茨说:“在从世界开始到牛顿生活的年代的全部数学中,牛顿的工作超过一半!”
然而,牛顿对自己的评价却十分谦虚:“我不知道世间把我看成什么样的人;但是对我来说,就像一个在海边玩耍的小孩,有时找到一块比较平滑的卵石或格外漂亮的贝壳,感到高兴,在我前面是完全没有被发现的真理的大海洋。”他很尊重前人的成果,他说如果他比别人看得远些,那只是由于站在巨人肩上的原故。

[NextPage]
11.刘徽
 
    刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.
    《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作.
    《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目.
    刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人.
    刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.

罗巴切夫斯基 
(Nikolay Ivanovich Lobachevsky, 1792~1856)
 
  很早以前,许多数学家都尝试证明欧几里得几何学中的平行公理,但是直到19
世纪以前并没有获得实质性的进展。1792年12月出生于俄国的罗巴切夫斯基,于1816
年将该公理的证明纳入自己的研究领域。
  罗巴切夫斯基于1807年入喀山大学,1811年毕业并获硕士学位。毕业后留校任
职,历任教授助理、常任教授、系主任、校长等职。1846年以后任喀山学区副督学,
直至逝世。罗巴切夫斯基在尝试证明平行公理时发现以前所有的证明都无法逃脱循
环论证的错误。于是,他作出假定:过直线外一点,可以作无数条直线与已知直线
平行。如果这假定被否定,则就证明了平行公理。然而,他不仅没有能否定这个命
题,而且用它同其他欧氏几何中与平行公理无关的命题一起展开推论,得到了一个
逻辑合理的新的几何体系—非欧几里得几何学,这就是后来人们所说的罗氏几何。
罗氏几何的创立对几何学和整个数学的发展起了巨大的作用,但一开始并没有引起
重视,直到罗巴切夫斯基去世后12年才逐渐被广泛认同。罗巴切夫斯基在数学分析
和代数学方面也有一定成就。
[NextPage]
12.欧拉(Leonhard Euler 公元1707-1783年)
 
     欧拉1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰•伯努利(Johann Bernoulli,1667-1748年)的精心指导.
    欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身".
    欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年.
    欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗.他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后, 也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文.19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法."
    欧拉的父亲保罗•欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学.由于小欧拉的才人和异常勤奋的精神,又受到约翰•伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了.
    1725年约翰•伯努利的儿子丹尼尔•伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了.
    沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来.在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A•欧拉(数学家和物理学家)笔录.欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久.
    欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成.有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来.欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题.
欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉.他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师." 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算".
    欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的. 欧拉在数学上的建树很多,对著名的哥尼斯堡七桥问题的解答开创了图论的研究。欧拉还发现 ,不论什么形状的凸多面体,其顶点数v、棱数e、面数f之间总有v-e+f=2这个关系。v-e+f被称为欧拉示性数,成为拓扑学的基础概念。在数论中,欧拉首先引进了重要的欧拉函数φ(n),用多种方法证明了费马小定理。以欧拉的名字命名的数学公式、定理等在数学书籍中随处可见, 与此同时,他还在物理、天文、建筑以至音乐、哲学方面取得了辉煌的成就。[欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),Σ(1755年),f(x)(1734年)等.

[NextPage]
13.秦九韶
(公元1202~1261年)
南宋,数学家。他在1247年(淳佑七年)著成『数书九章』十八卷.全书共81道题,分为九大类:大衍类、天时类、田域类、测望类、赋役类、钱谷类、营建类、军旅类、市易类。这是一部划时代的巨着,它总结了前人在开方中所使用的列筹方法,将其整齐而有系统地应用到高次方程的有理或无理根的求解上去,其中对「大衍求一术」﹝一次同余组解法)和「正负开方术」﹝高次方程的数值解法)等有十分深入的研究。其中的”大衍求一术”﹝一次同余组解法),在世界数学史上占有崇高的地位。在古代<孙子算经>中载有”物不知数”这个问题,举例说明:有一数,三三数之余二,五五数之余二,七七数之余二,问此数为何?这一类问题的解法可以推广成解一次同余式组的一般方法.奏九韶给出了理论上的证明,并将它定名为”大衍求一术”。
[NextPage]
14.丘成桐 
(1949~  )
  1983年,国际数学会议决定将1982年的数学界的诺贝尔奖——菲尔兹奖颁发给一位年仅34的华人数学家,这位才能非凡的年轻人就是丘成桐。
  丘成桐原籍中国广东,后来迁居香港,1966年进入香港中文大学数学系。他自幼迷恋数学,经过不懈的努力,在大学三年级时就由于出众的才华被一代几何学宗师陈省身发现,破格成为美国加州大学伯克利分校的研究生。在陈省身教授的亲自指导下,年仅22岁的丘成桐获得了博士学位。28岁时,丘成桐成为世界著名学府斯坦福大学的教授,并且是普林斯顿高级研究所的终身教授。
  丘成桐的第一项重要研究成果是解决了微分几何的著名难题—卡拉比猜想,从此名声鹊起。他把微分方程应用于复变函数、代数几何等领域取得了非凡成果,比如解决了高维闵考夫斯基问题,证明了塞凡利猜想等。这一系列的出色工作终于使他成为菲尔兹奖得主。
[NextPage]
15全能数学家——彭加勒
(1854—1912)
  一位数学史权威评价彭加勒时说,他是“对于数学和它的应用具有全面知识的最后一个人”。20世纪以来,数学进入了多学科、高难度的现代阶段,要想达到每个领域的最高成就已经不可能,但彭加勒确实是他那个时代的数学全才。
  一般数学划分为算术、代数、几何和分析四个领域,彭加勒对各个领域的研究成果,都是第一流的。他成功地解决了像太阳、地球、月亮间相互运动这一类的三体问题,他是现代物理的两大支柱——相对论和量子力学的思想先驱;他研究科学哲学提出的“约定着重分析了人类理性认识的基本法则,日益受到当代哲学家的重视。在他从事科学研究的34年里,发表论文500篇,著作30多部,获得过法国、英国、俄国、瑞典、匈牙利等国家的奖赏。被聘为30多个国家的科学院院士。
  1912年6月26日,彭加勒病逝前20天作了最后一次讲演,他说:“人生就是持续斗争。”彭加勒的一生就是斗争的一生。他因为小时候得过病,语言不够流畅,写字画图都有困难,还留下了喉头麻痹和身体虚弱的后遣症。不少人把他当作笨人。他成为数学家后,一位心理学家通过测验仍然认定他是“笨人”。
  彭加勒取得成就的关键是注意力高度集中。他一生最大的嗜好就是读书,读书速度快,记忆准确持久。因为视力不好,书写困难,他上课不记笔记,全神贯注于听讲、思索、理解,长期的磨练,使他具备了运用大脑完成复杂运算,构思长篇论文的能力。1871年,17岁的彭加勒报考高等工业学校,轻松地解决了主考官特意为他设计的难题,尽管他的几何作图得了零分,学校也破格录取。1879年,25岁的彭加勒获数学博士学位,32岁任数学和物理学教授,以后在科学园里辛勤耕耘了26年。 
[NextPage]
16.数学奇才——伽罗华
(1811—1832)
 
      1832年5月30日晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从枪伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点钟,他就离开了人世。数学史上最年轻、最有创造性的头脑停止了思考。人们说,他的死使数学发展推迟了好几十年。这个青年就是死时不满21岁的伽罗华。
  伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
  1828年,17岁的伽罗华开始研究方程论,创造了“置换群”的概念和方法,解决了几百年来使人头痛的方程来解决问题。伽罗华最重要的成就,是提出了“群”的概念,用群论改变了整个数学的面貌。1829年5月,伽罗华把他的成果写成论文,递交法国科学院,但伴随着这篇杰作而来的是一连串的打击和不幸。先是父亲因不堪忍受教士诽谤而自杀,接着因他的答辩既简捷又深奥令考官们不满而未能进入著名的巴黎综合技术学校。至于他的论文,先是被认为新概念太多又过于简略而要求重写;第二份推导详尽的稿子又因审稿人病逝而下落不明;1831年1月提交的第三份论文又因评阅人不能全部看懂而被否定。
  青年伽罗华一方面追求数学的真知,另一方面又献身于追求社会正义的事业。在1831年法国的“七月革命”中,作为高等师范学校新生,伽罗华率领群众走上街头,抗议国王的专制统治,不幸被捕。在狱中,他染上了霍乱。即使在这样的恶劣条件下,伽罗华仍然继续搞他的数学研究,并且写成了论文,准备出狱后发表。出狱不久,因为卷入一场无聊的“爱情”纠葛而决斗身亡。
  伽罗华去世后16年,他留存下来的60页手稿才得以发表,科学界才传遍了他的名字。

[NextPage]
17.数学王子——高斯 
(Carl Friedrich Gauss, 1777~1855)
 
  十八九世纪之交,德国产生了一位伟大的数学家,他就是人称“数学王子”的高斯。
  高斯在上小学的时候,有一次数学老师出了个题目,1+2+…+ 100=?由于看出1+100=101,2+99=101,…,50+51=101共50个101,因而高斯立刻答出了5050的结果,此举令老师称赞不已。
  对数学的痴迷,加上勤奋的学习,18岁时高斯发明了用圆规和直尺作正17边形的方法,从而解决了2000年来悬而未解的难题。他21岁大学毕业,22岁获博士学位。他在博士论文中证明了代数基本定理,即一元n次议程在复数范围内一定有根。在几何方面,高斯是非欧几何的发明人之一。高斯最重要的贡献还是在数论上,他的伟大著作《算术研究》标志着数论成为独立的数学分支学科的开始,而且这本书所讨论的内容成为直到20世纪数论研究的方向。高斯首先使用了同余记号,并系统而深入地阐述了同余式的理论;他证明了数论中的重要结果二次互反律等。高斯去世后,人们建立了以正17边形棱柱为基座的高斯像,以纪念这位伟大的数学家。
[NextPage]
18.泰勒斯——西方理性数学的倡导者
 
泰勒斯(Thales,前624~前547),古希腊学者,出生于小亚细亚的米利都城的一个奴隶主贵族家庭。家族政治地位的显贵、经济生活的富足,泰勒斯均不屑一顾,而是倾注全部精力从事哲学与科学的钻研。在年轻时,他四处游学,到过金字塔之国,在那里学会了天文观测、几何测量;也到过两河流域的巴比伦,饱学了东方璀璨的文化。回到家乡米利都后,创立了爱奥尼亚学派,后成为古希腊著名的七大学派之首。泰勒斯素有“科学之父”的美称。
泰勒斯有句名言:“水是万物之本源,万物终归于水。”他否定了神创造一切的观念,开创了从世界本身来认识世界的正确道路。在科学上,他倡导理性,不满足于直观的感性的特殊的认识,崇尚抽象的理性的一般的知识。譬如,等腰三角形的两底角相等,并不是指我们所能画出的、个别的等腰三角形,而应该是指“所有的”等腰三角形。这就需要论证、推理,才能确保数学命题的正确性,才能使数学具有理论上的严密性和应用上的广泛性。泰勒斯的积极倡导,为毕达哥拉斯创立理性的数学奠定了基础。
泰勒斯在数学方面曾发现了不少平面几何学的定理,诸如:“直径平分圆周”、“三角形两等边对等角”、“两条直线相交,对顶角相等”、“三角形两角及其夹边已知,此三角形完全确定”、“半圆周角是直角”等,这些定理虽然简单,而且古埃及、巴比伦人也许早已知道,但是,泰勒斯把它们整理成一般性的命题,论证了它们的严格性,并在实践中广泛应用。据说他可以利用一根标杆,测量、推算出金字塔的高度。
泰勒斯在天文学方面也曾有不同凡响的工作,据说他曾测知公元前585年5月28日的一次全日食。当时正值战争肆虐,泰勒斯向世人宣告,若不停战,到时天神震怒!到了那天下午,两派将士仍激战不已,霎时间,太阳在天空中消失,星辰闪烁,大地一片漆黑。双方将士见此景象,确信太阳神真的发怒了,要降罪于人类,于是立即罢兵休战,从此铸剑为犁,和睦相处。
另据传说,泰勒斯醉心于钻研哲学与科学,且可谓清贫守道,而遭市井嘲笑。他不以为然地说,君子爱财取之有道。他在对气候预测的基础上,估计来年油料作物会大丰收,于是垄断了米利都和开奥斯两地的所有油坊,到收获季节以高价出租。有了钱,科学研究可以做得更好。
这两则传说,如果是真实的话,那么泰勒斯确实不愧于其墓碑上所镌刻的颂辞:“他是一位圣贤,又是一位天文学家,在日月星辰的王国里,他顶天立地、万古流芳。”不过,这也是一则传说,因为泰勒斯生活的年代离我们太久远了,没有确切可靠的资料。
[NextPage]
19.万能大师——莱布尼茨
 (Gottfried Wilhelm Leibniz, 1646~1716)
 
  德国有一位被世人誉为“万能大师”的通才,他就是莱布尼茨,他在数学、逻辑学、文学、史学和法学等方面都很有建树。
  莱布尼茨生于莱比锡,6岁时丧父,但作为大学伦理学教授的父亲给他留下了丰富的藏书,引起了他广泛的学习兴趣。他11岁时自学了拉丁语和希腊语;15岁时因不满足对古典文学和史学的研究,进入莱比锡大学学习法律,同时对逻辑学和哲学很感兴趣。莱布尼茨思想活跃,不盲从,有主见,在20岁时就写出了《论组合的技巧》的论文,创立了关于“普遍特征”的“通用代数”,即数理逻辑的新思想。
  莱布尼茨还与英国数学家、大物理学家牛顿分别独立地创立了微积分学。莱布尼茨是从哲学的角度来研究数学的,他终生奋斗的主要目标是寻求一种可以获得知识和创造发明的普遍方法,他的许多数学发现就是在这种目的的驱使下获得的。牛顿建立微积分学主要是从物理学、运动学的观点出发,而莱布尼茨则从哲学、几何学的角度去考虑。今天的积分号∫(拉长的字母S)、微分号d都是莱布尼茨首先使用的。值得一提的是,他发明了能做乘法、除法的机械式计算机(十进制),并首先系统研究了二进制记数方法,这对于现代计算机的发明至关重要。1716年11月14日,莱布尼茨卒于汉诺威。
[NextPage]
20.为科学而疯的人——康托尔
 
  由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。
  康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。
  真金不怕火炼,康托尔的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托尔在一家精神病院去世。
  康托尔(1845—1918),生于俄国彼得堡一丹麦犹太血统的富商家庭,10岁随家迁居德国,自幼对数学有浓厚兴趣。23岁获博士学位,以后一直从事数学教学与研究。他所创立的集合论已被公认为全部数学的基础。
 
[NextPage]
21.韦达——符号代数的先驱
 
韦达(FrancisVieta,1540~l603),1540年生于法国普瓦图的丰特奈一勒扎特。早年学法律,曾在巴黎裁判所任律师。后以律师身份在地方议会供职。1580年任那瓦尔的亨利亲王的枢密顾问。工作之余,进行许多数学研究。在法国与西班牙战争期间,他曾破译西班牙作战机密,首次崭露数学才能,但却遭西班牙宗教裁判所缺席判决处以焚烧致死的极刑,幸未能执行。1584~1589年间,由于政治原因,韦达变成平民。于是他更加专心于数学研究,有时竟能几昼夜不眠。他是一位人文主义者,主张复古的意识很强。他还自费印刷、发行自己的著作。l603年12月13日在巴黎逝世。
韦达最突出的贡献是在符号代数方面。他系统地研读了卡丹、塔泰格利亚、蓬贝利、斯蒂文以及丢番图的著作,并从这些名家、尤其是从丢番图的著作中,获取了使用字母、缩写代数的思想方法,主张用“分析”这个术语来概括当时代数的知识内容和方法,而不赞成从阿拉伯承袭而来的algebra这个词。他创设了大量的代数符号,用字母代替本知数和未知数的乘幂,也用字母表示一般的系数,他的这套做法后继笛卡儿等人的改进,成为现代代数的形式。韦达把他的符号性代数称作“类的筹算术”,以区别所谓具体的所谓“数的筹算术”,从而指出了代数和算术的区别。他还系统地阐述并改进了三、四次方程的解法,指出了根与系数之间的重要关系,即韦达定理。从而,使当时的代数学系统化了,所以人们也称韦达为“西方代数学之父”。

[NextPage]

22.西方的勾股定理之父——毕达哥拉斯 
(Pythagoras, 约公元前580~前500)
 
  在古希腊早期的数学家中,毕达哥拉斯的影响是最大的。他那传奇般的一生给后代留下了众多神奇的传说。
  毕达哥拉斯生于萨摩斯(今希腊东部小岛),卒于他林敦(今意大利南部塔兰托)。 他既是哲学家、数学家,又是天文学家。他在年轻时,根据当时富家子弟的惯例,曾到巴比伦和埃及去游学,因而直接受到东方文明的熏陶。回国后,毕达哥拉斯创建了政治、宗教、数学合一的秘密学术团体,这个团体被后人称为毕达哥拉斯学派。这个学派的活动都是秘密的,笼罩着一种不可思议的神秘气氛。据说,每个新入学的学生都得宣誓严守秘密,并终身只加入这一学派。该学派还有一种习惯,就是将一切发明都归之于学派的领袖,而且秘而不宣,以致后人不知是何人在何时所发明的。
  毕达哥拉斯定理(即勾股定理)是毕达哥拉斯的另一贡献,他的一个学生希帕索斯通过勾股定理发现了无理数,虽然这一发现打破了毕达哥拉斯宇宙万物皆为整数与整数之比的信条,并导致希帕索斯悲惨地死去,但该定理对数学的发展起到了巨大的促进作用。此外,毕达哥拉斯在音乐、天文、哲学方面也做出了一定贡献,首创地圆说,认为日、月、五星都是球体,浮悬在太空之中。
 
小故事:
毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着是正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言;但这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形磁砖,但毕达哥拉斯不 只是欣赏磁砖的美丽,而是想到它们和[数]之间的关系,于是 拿了画笔并且蹲在地板上,选了一块磁砖以它的对角线 AB为边画一个正方形,他发现这个正方形面积恰好等于两块磁砖的面积和。他很好奇.... 于是再以两块磁砖拼成的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块磁砖的面积,也就是以两股为边作正方形面积之和。至此毕达哥拉斯作了大胆的假设: 任何直角三角形,其斜边的平方恰好等于另两边平方之和。那一顿饭,这位古希腊数学大师,视线都一直没有离开地面。

[NextPage]
22.信仰“数即万物”的人——毕达哥拉斯
(公元前572—前497)
 
无论是解说外在物质世界,还是描写内在精神世界,都不能没有数学!,最早悟出万事万物背后都有数的法则在起作用的,是生活在2500年前的古希腊数学家、哲学家毕达哥拉斯。
  毕达哥拉斯出生在爱琴海中的萨摩斯岛(今希腊东部小岛),自幼聪明好学,曾在名师门下学习几何学、自然科学和哲学。以后因为向往东方的智慧,经过万水千山来到巴比伦、印度和埃及,吸收了阿拉伯文明和印度文明甚至中国文明的丰富营养,大约在公元前530年又返回萨摩斯岛。后来又迁居意大利南部的克罗通,创建了自己的学派,一边从事教育,一边从事数学研究。
  毕达哥拉斯和他的学派在数学上有很多创造,尤其对整数的变化规律感兴趣。例如,把(除其本身以外)全部因数之和等于本身的数称为完全数(如6,28,496等),而将本身大于其因数之和的数称为盈数;将小于其因数之和的数称为亏数。他们还发现了“直角三角形两直角边平方和等于斜边平方”,西方人称之为毕达哥拉斯定理,我国称为勾股定理。当今数学上又有“毕达哥拉斯三元数组”的概念,指的是可作为直角三角形三条边的三数组的集合。
  在几何学方面,毕达哥拉斯学派证明了“三角形内角之和等于两个直角”的论断;研究了黄金分割;发现了正五角形和相似多边形的作法;还证明了正多面体只有五种——正四面体、正六面体、正八面体、正十二面体和正二十面体。
  毕达哥拉斯学派认为数最崇高,最神秘,他们所讲的数是指整数。“数即万物”,也就是说宇宙间各种关系都可以用整数或整数之比来表达。但是,有一个名叫希帕索斯的学生发现,边长为1的正方形,它的对角线(根2)却不能用整数之比来表达。这就触犯了这个学派的信条,于是规定了一条纪律:谁都不准泄露存在根2(即无理数)的秘密。天真的希帕索斯无意中向别人谈到了他的发现,结果被杀害。但根2很快就引起了数学思想的大革命。科学史上把这件事称为“第一次数学危机”。希帕索斯为根2殉难留下的教训是:科学是没有止境的,谁为科学划定禁区,谁就变成科学的敌人,最终被科学所埋葬。
  可惜,朝气蓬勃的毕达哥拉斯,到了晚年不仅学术上趋向保守,而且政治上反对新生事物,最后死于非命。
[NextPage]
23.杨辉——宋代著名的数学教育家
杨辉,字谦光,中国南宋(1127~1279)末年钱塘(今杭州市)人。其生卒年月及生平事迹均无从详考。据有关著述中的字句推测,杨辉大约于13世纪中叶至末叶生活在现今浙江杭州一带,曾当过地方官,到过苏州、台州等地。是当时有名的数学家和数学教育家,他每到一处都会有人慕名前来请教数学问题。
杨辉一生编写的数学书很多,但散佚也很严重。据史料记载,他至少有以下书,曾在国内或国外刊行:《详解九章算法》12卷(1261)
《详解算法》若干卷
《日用算法》(1262)
《乘除通变算宝》3卷(1274)
《续古摘奇算法如卷(1275)
《田亩比类乘除捷法如卷(1275)其中《详解九章算法》残缺不全,《详解算法》、《日用算法》迄今未见传本。而后3种共7卷合刊在一起,被称为《杨辉算法》。
杨辉继承中国古代数学传统,他广征博引数学典籍,引用了现已失传的宋代的许多算书,使我们才得知其部分内容。其中,刘益的“正负开方术”,贾宪的“增乘开方法”与“开方作法本源”图(即误传为“杨辉三角”),就是极其宝贵的数学史料。
杨辉继沈括研究“隙积术”之后,研究了“垛积术”,即关于高阶等差数列的研究。他首次将所谓“幻方”问题作为数学问题研究,并创“纵横图”之名。他给出了三阶至十阶幻方的实例,对某些构成原理也有所研究。杨辉之前在中国尚无这方面的研究成果,杨辉之后,明、清两代中国数学家关于纵横图的研究相继不绝,因此杨耀的著述也是研究关于幻方乃至组合数学历史的珍贵资料。杨辉还非常关心日常计算技巧,改进算法程序。
杨辉不仅著述甚丰,而且是一位杰出的数学教育家。他特别注重数学的普及教育,其许多著作都是为此而编写的教科书。杨辉主张在数学教育中贯彻理论联系实际的原则,在《日用算法》中,他说:“以乘除加减为法,称斗尺田为问;用法必载源流,命题须责实用。”他还主张贯彻循序渐进的原则,在《算法通变本末》(即《乘除通变算宝》上卷)中,专门为初学者制了一份“司算纲目”,要求学习者抓住要领,反复练习,这是我国历史上第一部数学教学大纲。他又告诫初学者:“夫学算者,题从法取,法将题验,凡欲明一法,必设一题。”又说:“题繁难见法理,定摆小题验法理,义既通虽用繁题了然可见也。”可见,他十分强调习题应有典型性。杨辉一生治学严谨,教学一丝不苟,他的这此教育思考和方法,至今也有很重要的参考价值。
[NextPage]
24.业余数学家之王——费马
(1601—1665)
 
  17世纪的一位法国数学家,提出了一个数学难题,使得后来的数学家一筹莫展,这个人就是费马。
  这道题是这样的:当n>2时,xn+yn=zn没有正整数解。在数学上这称为“费马大定理”。为了获得它的一个肯定的或者否定的证明,历史上几次悬赏征求答案,一代又一代最优秀的数学家都曾研究过,但是300多年过去了,至今既未获得最终证明,也未被推翻。即使用现代的电子计算机也只能证明:当n小于等于4100万时,费马大定理是正确的。由于当时费马声称他已解决了这个问题,但是他没有公布结果,于是留下数学难题中少有的千古之谜。
  费马生于法国南部,在大学里学的是法律,以后以律师为职业,并被推举为议员。费马的业余时间全用来读书,哲学、文学、历史、法律样样都读。30岁时迷恋上数学,直到他64岁病逝,一生中有许多伟大的发现。不过,他极少公开发表论文、著作,主要通过与友人通信透露他的思想。在他死后,由儿子通过整理他的笔记和批注挖掘他的思想。好在费马有个“不动笔墨不读书”的习惯,凡是他读过的书,都有他的圈圈点点,勾勾画画,页边还有他的评论。他利用公务之余钻研数学,并且成果累累。后世数学家从他的诸多猜想和大胆创造中受益非浅,赞誉他为“业余数学家之王”。
  费马对数学的贡献包括:与笛卡尔共同创立了解析几何;创造了作曲线切线的方法,被微积分发明人之一牛顿奉为微积分的思想先驱;通过提出有价值的猜想,指明了关于整数的理论——数论的发展方向。他还研究了掷骰子赌博的输赢规律,从而成为古典概率论的奠基人之一。 
[NextPage]
25.摘取数学皇冠上的明珠——陈景润 
(1933~1996)
  在现代数学史上,陈景润的名字与哥德巴赫猜想紧紧联系在一起。被誉为光辉成就的“陈氏定理”将哥德巴赫猜想的证明推进了一大步,使中国在这一领域的研究上居世界领先地位。
  1953年,陈景润毕业于厦门大学数学系。由于他对数论中一系列问题的出色研究,受到华罗庚教授的重视,被调入中国科学院数学研究所工作,后来就有了“罗庚慧眼识景润”的佳话。虽然当时的生活条件非常艰苦,在仅有6平方米的小屋里,陈景润坚持埋头于哥德巴赫猜想的研究,经过无数个日夜、几度寒暑的艰苦努力,终于取得了震惊世界的成就。然而,陈景润付出的努力也是惊人的,用掉的演算草稿纸可以装满几个麻袋,并且积劳成疾。即使如此,躺在病榻上的他,仍锲而不舍地耕耘着。陈景润在数论中其他著名问题,如高斯圆内格点问题、球内格点问题、塔里问题、华林问题等的研究上也做出了重要贡献。
[NextPage]
26.中国数学界的伯乐——熊庆来
 
  人们在赞美千里马时,总会记起识马的伯乐。中国科学界在赞美华罗庚时,也不会忘记他的老师、中国近代数学的先驱——熊庆来。
  熊庆来(1893—1969),字迪之,云南弥勒人,18岁考入云南省高等学堂,20岁赴比利时学采矿,后到法国留学,并获博士学位。他主要从事函数论方面的研究,定义了一个“无穷级函数”,国际上称为熊氏无穷数。
  熊庆来热爱教育事业,为培养中国的科学人才,做出了卓越的贡献。1930年,他在清华大学当数学系主任时,从学术杂志上发现了华罗庚的名字,了解到华罗庚的自学经历和数学才华以后,毅然打破常规,请只有初中文化程度的19岁的华罗庚到清华大学。在熊庆来的培养下,华罗庚后来成为著名的数学家。我国许多著名的科学家都是他的学生。在70多岁高龄时,他虽已半身不遂,还抱病指导两个研究生,这就是青年数学家杨乐和张广厚。
  熊庆来爱惜和培养人才的高尚品格,深受人们的赞扬和敬佩。早在1921年,他在东南大学(南京大学前身)当教授时,发现一个叫刘光的学生很有才华,经常指点他读书、研究。后来又和一位教过刘光的教授,共同资助家境贫寒的刘光出国深造,并且按时给他寄生活费。有一次,熊庆来甚至卖掉自己身上穿的皮袍子,给刘光寄钱。刘光成为著名的物理学家后,经常满怀深情地提起这段往事,他说:“教授为我卖皮袍子的事,十年之后才听到,当时,我感动得热泪盈眶。这件事对我是刻骨铭心的,永生不能忘怀。他对我们这一代多么关心,付了多么巨大的热情和挚爱呀!” 
[NextPage]
27.祖冲之(公元429-500年)
 
     祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
    祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取 为约率 ,取 为密率,其中 取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
    祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
    祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".


关键词: 数学家        点击数:13061
文章推荐
中外著名数学家资料集13061
全站文章
近代饶氏名人42245
中外著名数学家资料集13061
如何设置局域网IP10260
常见无线路由器默认密码大全与初始密码9896
也谈笔记本电脑的无线网卡开关异常的处8248
云阳各大中小餐厅及酒楼联系方式7161
视频: 重庆市云阳县天景初3727
Flash软件最大16000帧解决方2922
动易网站系统用户权限设置问题2769
郑观应《盛世危言》2570
关于虫儿飞 天景初中登录 虫儿飞用户登录 网址导航
Copyright 2005-2019©cqraojun.cn All Rights Reserved.
设计制作:虫儿飞 备案号:渝ICP备12001302号-1
客户端IP:18.210.28.227,当前访问人次:3616